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1 Objectives

In this lab, you will investigate the transition to chaos in the Lorenz equations – a system of non-linear
ordinary differential equations. Using interactive examples, and analytical and numerical techniques, you
will determine the stability of the solutions to the system, and discover a rich variety in their behaviour.
You will program both an adaptive and non-adaptive Runge-Kuttan code for the problem, and determine
the relative merits of each.
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2 Readings

There is no required reading for this lab, beyond the contents of the lab itself. Nevertheless, the original 1963
paper by Lorenz [Lorenz(1963)] is worthwhile reading from a historical standpoint.

If you would like additional background on any of the following topics, then refer to the sections indicated
below:

Easy Reading:

– Gleick [Gleick(1987), pp. 9-31], an interesting overview of the science of chaos (with no mathe-
matical details), and a look at its history.

– Palmer [Palmer(1993)] has a short article on Lorenz’ work and concentrating on its consequences
for weather prediction.

Mathematical Details:

– Sparrow [Sparrow(1982)], an in-depth treatment of the mathematics behind the Lorenz equations,
including some discussion of numerical methods.

Related Sites on the Web: The following are just a few of the many sites on the Web that have
information related to the Lorenz attractor, and chaos in general.

– http://www.ncsa.uiuc.edu/SCMS/DigLib/text/chaos/Chaos.html: A sequence of images for var-
ious values of the parameter r. It also includes an example of the behaviour of the ”Duffing
oscillator”.

– http://www.mindspring.com/˜pcoleman/pjchomem.html: A PC-based package called STRANGE
that demonstrates dynamical systems concepts, including the Lorenz and Rössler attractors.

– http://www.interactive.net/˜mizrach/SNDE/snde.html: The “Society for Nonlinear Dynamics
and Econometrics,” with lots of links to information sources at other sites.

3 Introduction

For many people working in the physical sciences, the butterfly effect is a well-known phrase. But even
if you are unacquainted with the term, its consequences are something you are intimately familiar with.
Edward Lorenz investigated the feasibility of performing accurate, long-term weather forecasts, and came
to the conclusion that even something as seemingly insignificant as the flap of a butterfly’s wings can have
an influence on the weather on the other side of the globe. This implies that global climate modelers must
take into account even the tiniest of variations in weather conditions in order to have even a hope of being
accurate. Some of the models used today in weather forecasting have up to a million unknown variables!

With the advent of modern computers, many people believed that accurate predictions of systems as com-
plicated as the global weather were possible. Lorenz’ studies [Lorenz(1963)], both analytical and numerical,
were concerned with simplified models for the flow of air in the atmosphere. He found that even for sys-
tems with considerably fewer variables than the weather, the long-term behaviour of solutions is intrinsically
unpredictable. He found that this type of non-periodic, or chaotic behaviour, appears in systems that are
described by non-linear differential equations.

The atmosphere is just one of many hydrodynamical systems, which exhibit a variety of solution behaviour:
some flows are steady; others oscillate between two or more states; and still others vary in an irregular or
haphazard manner. This last class of behaviour in a fluid is known as turbulence, or in more general systems
as chaos. Examples of chaotic behaviour in physical systems include

• thermal convection in a tank of fluid, driven by a heated plate on the bottom, which displays an irregular
patter of “convection rolls” for certain ranges of the temperature gradient;

• a rotating cylinder, filled with fluid, that exhibits regularly-spaced waves or irregular, nonperiodic flow
patterns under different conditions;

• the Lorenzian water wheel, a mechanical system, described in Appendix A.1.

http://www.ncsa.uiuc.edu/SCMS/DigLib/text/chaos/Chaos.html
http://www.mindspring.com/~{}pcoleman/pjchomem.html
http://www.interactive.net/~{}mizrach/SNDE/snde.html
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One of the simplest systems to exhibit chaotic behaviour is a system of three ordinary differential equa-
tions, studied by Lorenz, and which are now known as the Lorenz equations (see equations (4.1)). They are
an idealization of a more complex hydrodynamical system of twelve equations describing turbulent flow in
the atmosphere, but which are still able to capture many of the important aspects of the behaviour of atmo-
spheric flows. The Lorenz equations determine the evolution of a system described by three time-dependent
state variables, x(t), y(t) and z(t). The state in Lorenz’ idealized climate at any time, t, can be given by a
single point, (x, y, z), in phase space. As time varies, this point moves around in the phase space, and traces
out a curve, which is also called an orbit or trajectory. The plot in Figure 1 illustrates a sample orbit in
phase space (with initial value (5, 5, 5)). Notice that the orbit appears to be lying in a surface composed
of two “wings”. In fact, for the parameter values used here, all orbits, no matter the initial conditions, are
eventually attracted to this surface; such a surface is called an attractor, and this specific one is termed the
butterfly attractor . . . a very fitting name, both for its appearance, and for the fact that it is a visualization
of solutions that exhibit the “butterfly effect.” The individual variables are plotted versus time in Figure 2.
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Figure 1: A plot of the solution to the Lorenz equations as an orbit in phase space. Parameters: σ = 10,
b = 8

3 , r = 28; initial values: (x, y, z) = (5, 5, 5).

Here is an animation that will allow you a look at the butterfly attractor from various points of
view.

This is another animation that will show you how a single orbit evolves in time.
As you saw in the movie, the behaviour of the solution, even though it seems to be confined to a specific

surface, is anything but regular. The solution seems to loop around and around forever, oscillating around
one of the wings, and then jump over to the other one, with no apparent pattern to the number of revolutions.
This example is computed for just one choice of parameter values, and you will see in the problems later on
in this lab, that there are many other types of solution behaviour. In fact, there are several very important
characteristics of the solution to the Lorenz equations which parallel what happens in much more complicated
systems such as the atmosphere:

1. The solution remains within a bounded region (that is, none of the values of the solution “blow up”),
which means that the solution will always be physically reasonable.

2. The solution flips back and forth between the two wings of the butterfly diagram, with no apparent
pattern. This “strange” way that the solution is attracted towards the wings gives rise to the name

http://roc.eos.ubc.ca/numeric/labs/lab6/images/rotate.mpg
http://roc.eos.ubc.ca/numeric/labs/lab6/images/rotate.mpg
http://roc.eos.ubc.ca/numeric/labs/lab6/images/butterfly.mpg
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Figure 2: A plot of the solution to the Lorenz equations versus time. Parameters: σ = 10, b = 8
3 , r = 28;

initial values: (x, y, z) = (5, 5, 5).

strange attractor.

3. The resulting solution depends very heavily on the given initial conditions. Even a very tiny change in
one of the initial values can lead to a solution which follows a totally different trajectory, if the system
is integrated over a long enough time interval.

4. The solution is irregular or chaotic, meaning that it is impossible, based on parameter values and initial
conditions (which may contain small measurement errors), to predict the solution at any future time.

4 The Lorenz Equations

As mentioned in the previous section, the equations we will be considering in this lab model an idealized
hydrodynamical system: two-dimensional convection in a tank of water which is heated at the bottom (as
pictured in Figure 3).

Lorenz wrote the equations in the form

dx

dt
= σ(y − x)

dy

dt
= rx− y − xz (4.1)

dz

dt
= xy − bz

where σ, r and b are real, positive parameters. The variables in the problem can be interpreted as follows:

x is proportional to the intensity of the convective motion (positive for clockwise motion, and a larger
magnitude indicating more vigorous circulation),

y is proportional to the temperature difference between the ascending and descending currents (it’s pos-
itive if the warm water is on the bottom),
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Cool upper boundary

Warm lower boundary
Figure 3: Lorenz studied the flow of fluid in a tank heated at the bottom, which results in “convection rolls”,
where the warm fluid rises, and the cold fluid is drops to the bottom.

z is proportional to the distortion of the vertical temperature profile from linearity (a value of 0 cor-
responds to a linear gradient in temperature, while a positive value indicates that the temperature is
more uniformly mixed in the middle of the tank and the strongest gradients occur near the boundaries),

t is the dimensionless time,

σ is called the Prandtl number (it involves the viscosity and thermal conductivity of the fluid),

r is a control parameter, representing the temperature difference between the top and bottom of the tank,
and

b measures the width-to-height ratio of the convection layer.

Notice that these equations are non-linear in x, y and z, which is a result of the non-linearity of the fluid
flow equations from which this simplified system is obtained.

Mathematical Note: This system of equations is derived by Saltzman [Saltzman(1962)] for the
thermal convection problem. However, the same equations (4.1) arise in other physical systems
as well. One example is the lab6:ap:water-wheel whose advantage over the original derivation
by Saltzman (which is also used in Lorenz’ paper [Lorenz(1963)]) is that the system of ODEs
is obtained directly from the physics, rather than as an approximation to a partial differential
equation.

Remember from Section 3 that the Lorenz equations exhibit nonperiodic solutions which behave in a
chaotic manner. Using analytical techniques, it is actually possible to make some qualitative predictions
about the behaviour of the solution before doing any computations. However, before we move on to a
discussion of the stability of the problem in Section 4.4, you should do the following exercise, which will give
you a hands-on introduction to the behaviour of solutions to the Lorenz equations.

Problem 1: Lorenz’ results are based on the following values of the physical parameters taken from
Saltzman’s paper [Saltzman(1962)]:

σ = 10 and b =
8
3
.

As you will see in Section 4.4, there is a critical value of the parameter r, r∗ = 470/19 ≈ 24.74 (for these
values of σ and b); it is critical in the sense that for any value of r > r∗, the flow is unstable.

To allow you to investigate the behaviour of the solution to the Lorenz equations, you can try out various
parameter values in the following interactive example. Initially, leave σ and b alone, and modify only r and
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the initial conditions. If you have time, you can try varying the other two parameters, and see what happens.
Here are some suggestions:

• Fix the initial conditions at (5, 5, 5) and vary r between 0 and 100.

• Fix r = 28, and vary the initial conditions; for example, try (0, 0, 0), (0.1, 0.1, 0.1), (0, 0, 20), (100, 100, 100),
(8.5, 8.5, 27), etc.

• Anything else you can think of . . .

1. Describe the different types of behaviour you see and compare them to what you saw in Figure 1. Also,
discuss the results in terms of what you read in Section 3 regarding the four properties of the solution.

2. One question you should be sure to ask yourself is: Does changing the initial condition affect where the
solution ends up? The answer to this question will indicate whether there really is an attractor which
solutions approach as t →∞.

3. Finally, for the different types of solution behaviour, can you interpret the results physically in terms
of the thermal convection problem?

Here is the interactive Lorentz equation example.
Now, we’re ready to find out why the solution behaves as it does. In Section 3, you were told about four

properties of solutions to the Lorenz equations that are also exhibited by the atmosphere, and in the problem
you just worked though, you saw that these were also exhibited by solutions to the Lorenz equations. In
the remainder of this section, you will see mathematical reasons for two of those characteristics, namely the
boundedness and stability (or instability) of solutions.

4.1 Boundedness of the Solution

The easiest way to see that the solution is bounded in time is by looking at the motion of the solution in
phase space, (x, y, z), as the flow of a fluid, with velocity (ẋ, ẏ, ż) (the “dot” is used to represent a time
derivative, in order to simplify notation in what follows). The divergence of this flow is given by

∂ẋ

∂x
+

∂ẏ

∂y
+

∂ż

∂z
,

and measures how the volume of a fluid particle or parcel changes – a positive divergence means that the
fluid volume is increasing locally, and a negative volume means that the fluid volume is shrinking locally
(zero divergence signifies an incompressible fluid, which you will see more of in Lab 7 and Lab 8). If you look
back to the Lorenz equations (4.1), and take partial derivatives, it is clear that the divergence of this flow is
given by

∂ẋ

∂x
+

∂ẏ

∂y
+

∂ż

∂z
= −(σ + b + 1).

Since σ and b are both positive, real constants, the divergence is a negative number, which is always less
than −1. Therefore, each small volume shrinks to zero as the time t →∞, at a rate which is independent of
x, y and z. The consequence for the solution, (x, y, z), is that every trajectory in phase space is eventually
confined to a region of zero volume. As you saw in Problem 1, this region, or attractor, need not be a point
– in fact, the two wings of the “butterfly diagram” are a surface with zero volume.

The most important consequence of the solution being bounded is that none of the physical variables, x,
y, or z “blows up.” Consequently, we can expect that the solution will remain with physically reasonable
limits.

4.2 Steady States

A steady state of a system is a point in phase space from which the system will not change in time, once
that state has been reached. In other words, it is a point, (x, y, z), such that the solution does not change,
or where

dx

dt
= 0 and

dy

dt
= 0 and

dz

dt
= 0.

http://roc.eos.ubc.ca/numeric/labs/lab6/cgi-bin/lorentz.cgi
http://roc.eos.ubc.ca/numeric/labs/lab7/lab7.pdf
http://roc.eos.ubc.ca/numeric/labs/lab8/lab8.pdf
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This point is usually referred to as a stationary point of the system.
Problem 2: Set the time derivatives equal to zero in the Lorenz equations (4.1), and solve the resulting

system to show that there are three possible steady states, namely the points

(0, 0, 0),

(
√

b(r − 1),
√

b(r − 1), r − 1), and

(−
√

b(r − 1),−
√

b(r − 1), r − 1).

Remember that r is a positive real number, so that that there is only one stationary point when 0 ≤ r ≤ 1,
but all three stationary points are present when r > 1.

While working through Problem 1, did you notice the change in behaviour of the solution as r passes
through the value 1? If not, then go back to the interactive example and try out some values of r both less
than and greater than 1 to see how the solution changes.

A steady state tells us the behaviour of the solution only at a single point. But what happens to the
solution if it is perturbed slightly away from a stationary point? Will it return to the stationary point; or will
it tend to move away from the point; or will it oscillate about the steady state; or something else . . . ? All
of these questions are related to the long-term, asymptotic behaviour or stability of the solution near a given
point. You already should have seen some examples of different asymptotic solution behaviour in the Lorenz
equations for different parameter values. The next section describes a general method for determining the
stability of a solution near a given stationary point.

4.3 Linearization about the Steady States

The difficult part of doing any theoretical analysis of the Lorenz equations is that they are non-linear. So,
why not approximate the non-linear problem by a linear one?

This idea should remind you of what you read about Taylor series in Lab #2. There, we were approx-
imating a function, f(x), around a point by expanding the function in a Taylor series, and the first order
Taylor approximation was simply a linear function in x. The approach we will take here is similar, but will
get into Taylor series of functions of more than one variable: f(x, y, z, . . .).

The basic idea is to replace the right hand side functions in (4.1) with a linear approximation about a
stationary point, and then solve the resulting system of linear ODE’s. Hopefully, we can then say something
about the non-linear system at values of the solution close to the stationary point (remember that the Taylor
series is only accurate close to the point we’re expanding about).

So, let us first consider the stationary point (0, 0, 0). If we linearize a function f(x, y, z) about (0, 0, 0) we
obtain the approximation:

f(x, y, z) ≈ f(0, 0, 0) + fx(0, 0, 0) · (x− 0) + fy(0, 0, 0) · (y − 0) + fz(0, 0, 0) · (z − 0).

If we apply this formula to the right hand side function for each of the ODE’s in (4.1), then we obtain the
following linearized system about (0, 0, 0):

dx

dt
= −σx + σy

dy

dt
= rx− y (4.2)

dz

dt
= −bz.

(note that each right hand side is now a linear function of x, y and z). It is helpful to write this system in
matrix form as

d

dt

 x
y
z

 =

 −σ σ 0
r −1 0
0 0 −b

  x
y
z

 (4.3)

the reason for this being that the eigenvalues of the matrix give us valuable information about the solution
to the linear system. In fact, it is a well-known result from the study of dynamical systems is that if the
matrix in (4.3) has distinct eigenvalues λ1, λ2 and λ3, then the solution to this equation is given by

x(t) = c1e
λ1t + c2e

λ2t + c3e
λ3t, (4.4)
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and similarly for the other two solution components, y(t) and z(t) (the ci’s are constants that are determined
by the initial conditions of the problem). This should not seem too surprising, if you think that the solution
to the scalar equation dx/dt = λx is x(t) = eλt.

Problem 3: Remember from Lab #3 that the eigenvalues of a matrix, A, are given by the roots of the
characteristic equation, det(A − λI) = 0. Determine the characteristic equation of the matrix in (4.3), and
show that the eigenvalues of the linearized problem are

λ1 = −b, and λ2, λ3 =
1
2

(
−σ − 1±

√
(σ − 1)2 + 4σr

)
. (4.5)

When r > 1, the same linearization process can be applied at the remaining two stationary points, which
have eigenvalues that satisfy another characteristic equation:

λ3 + (σ + b + 1)λ2 + (r + σ)bλ + 2σb(r − 1) = 0. (4.6)

4.4 Stability of the Linearized Problem

Now that we know the eigenvalues of the system around each stationary point, we can write down the solution
to the linearized problem. However, it is not the exact form of the linearized solution that we’re interested
in, but rather its stability. In fact, the eigenvalues give us all the information we need to know about how
the linearized solution behaves in time, and so we’ll only talk about the eigenvalues from now on.

It is possible that two of the eigenvalues in (4.5) or in (4.6) can be complex numbers – what does this
mean for the solution in (4.4)? The details are a bit involved, but the important thing to realize is that if
λ2, λ3 = a± ib are complex (remember that complex roots always occur in conjugate pairs) then the solutions
can be rearranged so that they are of the form

x(t) = c1e
λ1t + c2e

at cos(bt) + c3e
at sin(bt). (4.7)

In terms of the asymptotic stability of the problem, we need to look at the asymptotic behaviour of the
soution (4.4) or (4.7), as t →∞, from which several conclusions can be drawn:

1. If the eigenvalues are real and negative, then the solution will go to zero as t → ∞. In this case the
linearized solution is stable.

2. If the eigenvalues are real, and at least one is positive, then the solution will blow up as t →∞. In this
case the linearized solution is unstable.

3. If there is a complex conjugate pair of eigenvalues, a±ib, then the solution exhibits oscillatory behaviour
(with the appearance of the terms sin bt and cos bt). If the real part, a, of all eigenvalues is negative,
the oscillations will decay in time and the solution is stable; if the real part is positive, then the
oscillations will grow, and the solution is unstable. If the complex eigenvalues have zero real part, then
the oscillations will neither decay nor increase in time – the resulting linearized problem is periodic,
and we say the solution is marginally stable.

Now, the million dollar question:

Does the stability of the non-linear system parallel that of the linearized systems near the stationary
points?

The answer is “almost always”. We won’t go into why, or why not, but just remember that you can usually
expect the non-linear system to behave just as the linearized system near the stationary states.

The discussion of stability of the stationary points for the Lorenz equations will be divided up based on
values of the parameter r (assuming σ = 10 and b = 8

3 ). You’ve already seen that the behaviour of the
solution changes significantly, by the appearance of two additional stationary points, when r passes through
the value 1. You’ll also see an explanation for the rest of the behaviour you observed:

0 < r < 1: there is only one stationary state, namely the point (0, 0, 0). You can see from (4.5) that for these
values of r, there are three, real, negative roots. The origin is a stable stationary point; that is, it
attracts nearby solutions to itself.
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r > 1: The origin has one positive, and two negative, real eigenvalues. Hence, the origin is unstable. Now,
we need only look at the other two stationary points, whose behaviour is governed by the roots of (4.6)
. . .

1 < r < 470
19 : The other two stationary points have eigenvalues that have negative real parts. So these two

points are stable.

It’s also possible to show that two of these eigenvalues are real when r < 1.346, and they are complex
otherwise (see Sparrow [Sparrow(1982)] for a more complete discussion). Therefore, the solution begins
to exhibit oscillatory behaviour beyond a value of r greater than 1.346.

r > 470
19 : The other two stationary points have one real, negative eigenvalue, and two complex eigenvalues
with positive real part. Therefore, these two points are unstable. In fact, all three stationary points are
unstable for these values of r.

The stability of the stationary points is summarized in Table 1.

(0, 0, 0) (±
√

b(r − 1),±
√

b(r − 1), b− 1)
0 < r < 1 stable −

1 < r < 470
19 unstable stable

r > 470
19 unstable unstable

Table 1: Summary of the stability of the stationary points for the Lorenz equations; parameters σ = 10,
b = 8

3 .

Note: This “critical value” of r∗ = 470
19 is actually found using the formula

r∗ =
σ(σ + b + 3)

σ − b− 1
.

See Sparrow [Sparrow(1982)] for more details.
Note: A qualitative change in behaviour of in the solution when a parameter is varied is called a

bifurcation. Bifurcations occur at:

• r = 1, when the origin switches from stable to unstable, and two more stationary points appear.

• r = r∗, where the remaining two stationary points switch from being stable to unstable.

Remember that the linear results apply only near the stationary points, and do not apply to all of the
phase space. Nevertheless, the behaviour of the orbits near these points can still say quite a lot about the
behaviour of the solutions.

Problem 4: Based on the analytical results from this section, you can now go back to your results from
Problem 1 and look at them in a new light. Write a short summary of your results (including a few plots or
sketches), describing how the solution changes with r in terms of the existence and stability of the stationary
points.

There have already been hints at problems with the linear stability analysis. One difficulty that hasn’t
been mentioned yet is that for values of r > r∗, the problem has oscillatory solutions, which are unstable.
Linear theory does not reveal what happens when these oscillations become large! In order to study more
closely the long-time behaviour of the solution, we must turn to numerical integration (in fact, all of the plots
you produced in Problem 1 were generated using a numerical code).

5 Numerical Integration

In Lorenz’ original paper, he discusses the application of the forward Euler and leap frog time-stepping
schemes, but his actual computations are done using the second order Heun’s method (you were introduced
to this method in Lab #4. Since we already have a lot of experience with Runge-Kutta methods for systems
of ODE’s from earlier labs, you’ll be using this approach to solve the Lorenz equations as well. You already
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have a code from Lab #5 that solves the Daisy World equations, so you can jump right into the programming
for the Lorenz equations with the following exercises . . .

Problem 5: You saw in Lab #5 that adaptive time-stepping saved a considerable amount of computing
time for the Daisy World problem. In this problem, you will be investigating whether or not an adaptive
Runge-Kutta code is the best choice for the Lorenz equations.

Since you have a code already written for a system of ODE’s in Lab #5 it should be a simple task to
modify this code to integrate the Lorenz equations. Do this, and use the code to compute in both adaptive
and non-adaptive modes. Compare the number of time steps taken (plot the time step vs. the integration
time for both methods). Which method is more efficient?

To answer this last question, you will have to consider the cost of the adaptive scheme, compared to the
non-adaptive one. The adaptive scheme is obviously more expensive, but by how much? You should think in
terms of the number of multiplicative operations that are required in every time step for each method. You
don’t have to give an exact operation count, round figures will do.

Problem 6: One property of chaotic systems such as the Lorenz equations is their sensitivity to initial
conditions – a consequence of the “butterfly effect.” Modify your code from Problem 5 to compute two
trajectories (in the chaotic regime r > r∗) with different initial conditions simultaneously. Use two initial
conditions that are very close to each other, say (1, 1, 20) and (1, 1, 20.001). Use your “method of choice”
(adaptive/non-adaptive), and plot the distance between the two trajectories as a function of time. What do
you see?

One important limitation of numerical methods is immediately evident when approximating non-periodic
dynamical systems such as the Lorenz equations: namely, every computed solution is periodic. That is, when
we’re working in floating point arithmetic, there are only finitely many numbers that can be represented,
and the solution must eventually repeat itself. When using single precision arithmetic, a typical computer
can represent many more floating point numbers than we could ever perform integration steps in a numerical
scheme. However, it is still possible that round-off error might introduce a periodic orbit in the numerical
solution where one does not really exist. In our computations, this will not be a factor, but it is something
to keep in mind.

5.1 Other Chaotic Systems

There are many other ODE systems that exhibit chaos. An example is one studied by Rössler, which obeys
a similar-looking system of three ODE’s:

ẋ = −y − z

ẏ = x + ay (5.8)
ż = b + z(x− c)

Suppose that b = 2, c = 4, and consider the behaviour of the attractor as a is varied. When a is small, the
attractor is a simple closed curve. As a is increased, however, this splits into a double loop, then a quadruple
loop, and so on. Thus, a type of period-doubling takes place, and when a reaches about 0.375, there is a
fractal attractor in the form of a band, that looks something like what is known in mathematical circles as
a Möbius strip.

Note: If you’re really keen on this topic, you might be interested in using your code to investigate the
behaviour of this system of equations, though you are not required to hand anything in for this!

First, you could perform a stability analysis for (5.8), like you saw above for the Lorenz equations. Then,
modify your code to study the Rössler attractor. Use the code to compare your analytical stability results
to what you actually see in the computations.

6 Summary

In this lab, you have had the chance to investigate the solutions to the Lorenz equations and their stability
in quite some detail. You saw that for certain parameter values, the solution exhibits non-periodic, chaotic
behaviour. The question to ask ourselves now is: What does this system tell us about the dynamics of flows
in the atmosphere? In fact, this system has been simplified so much that it is no longer an accurate model of
the physics in the atmosphere. However, we have seen that the four characteristics of flows in the atmosphere
(mentioned in Section 3) are also present in the Lorenz equations.

http://roc.eos.ubc.ca/numeric/labs/lab5/lab5.pdf
http://roc.eos.ubc.ca/numeric/labs/lab5/lab5.pdf
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Each state in Lorenz’ idealized “climate” is represented by a single point in phase space. For a given set
of initial conditions, the evolution of a trajectory describes how the weather varies in time. The butterfly
attractor embodies all possible weather conditions that can be attained in the Lorenzian climate. By changing
the value of the parameter r (and, for that matter, σ or b), the shape of the attractor changes. Physically,
we can interpret this as a change in some global property of the weather system resulting in a modification
of the possible weather states.

The same methods of analysis can be applied to more complicated models of the weather. One can imagine
a model where the depletion of ozone and the increased concentration of greenhouse gases in the atmosphere
might be represented by certain parameters. Changes in these parameters result in changes in the shape of
the global climate attractor for the system. By studying the attractor, we could determine whether any new,
and possibly devastating, weather states are present in this new ozone-deficient atmosphere.

We began by saying in the Introduction that the butterfly effect made accurate long-term forecasting
impossible. Nevertheless, it is still possible to derive meaningful qualitative information from such a chaotic
dynamical system.

A Mathematical Notes

A.1 The Lorenzian Water Wheel Model

This derivation is adapted from Sparrow [Sparrow(1982), Appendix B].
Imagine a wheel which is free to rotate about a horizontal axis, as depicted in Figure 4. To the circumfer-

Figure 4: The Lorenzian water wheel.

ence of the wheel is attached a series of leaky buckets. Water flows into the buckets at the top of the wheel,
and as the buckets are filled with water, the wheel becomes unbalanced and begins to rotate. Depending on
the physical parameters in this system, the wheel may remain motionless, rotate steadily in a clockwise or
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counter-clockwise direction, or reverese its motion in irregular intervals. This should begin to remind you of
the type of behaviour exhibited in the Lorenz system for various parameters.

The following are the variables and parameters in the system:

r: the radius of the wheel (constant),

g: the acceleration due to gravity (constant),

θ(t): is the angular displacement (not a fixed point on the wheel) (unknown),

m(θ, t): the mass of the water per unit arc, which we assume is a continuous function of the angle (unknown),

Ω(t): the angular velocity of the wheel,

We also make the following assumptions:

• water is added to the wheel at a constant rate.

• the points on the circumference of the wheel gain water at a rate proportional to their height.

• water leaks out at a rate proportional to m.

• there is frictional damping in the wheel proportional to the angular velocity, kΩ,

• A, B, h are additional positive constants (???).

We’ll pass over some details here, and go right to the equations of motion. The equation describing the
evloution of the angular momentum is

dΩ
dt

= −kΩ−
(

gh

2πaA

)
m cos θ. (A.9)

The requirement of conservation of mass in the system leads to two equations

d(m sin θ)
dt

= Ωm cos θ − hm sin θ + 2πB (A.10)

and
d(m cos θ)

dt
= −Ωm sin θ − hm cos θ, (A.11)

(where all variables dependent on the angle have been averaged over θ).
Using a suitable change of variables, equations (A.9), (A.10) and (A.11) can be written in the same form

as the Lorenz equations (with b = 1).
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